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Abstract

A Toeplitz matrix has constant diagonals; a multilevel Toeplitz matrix is defined recursively with respect to the levels
by replacing the matrix elements with Toeplitz blocks. Multilevel Toeplitz linear systems appear in a wide range
of applications in science and engineering. This paper discusses an MPI implementation for solving such a linear
system by using the conjugate gradient algorithm. The implementation techniques can be generalized to other iterative
Krylov methods besides conjugate gradient. These techniques include the use of an arbitrary dimensional process
grid for handling the multilevel Toeplitz structure, a communication-hiding approach for performing matrix-vector
multiplications, the incorporation of multilevel circulant preconditioning for accelerating convergence, an efficient
orthogonalization manager for detecting linear dependence in block iterations, and an algorithmic rearrangement to
eliminate all-reduce synchronizations. The combined use of these techniques leads to a scalable solver for large
multilevel Toeplitz systems, possibly with several right-hand sides. We show experimental results on matrices of size
up to the order of one billion with nearly perfect scaling by using up to 1,024 MPI processes. We also demonstrate an
application of the solver in parameter estimation for analyzing large-scale climate data.

Keywords: Krylov method, Conjugate gradient, Multiple right-hand sides, Multilevel Toeplitz, Circulant
preconditioning, FFT, Orthogonalization, Communication hiding, Allreduce

1. Introduction

The (multilevel) Teoplitz structure is a common matrix pattern arising in many application domains, such as digital
signal processing, image processing, optimal control, and stationary time series. A Toeplitz matrix has constant diag-
onals. It can be represented solely by the first row and the first column, whose entries are called generating elements.
A multilevel Toeplitz structure is defined recursively on the levels. In the simplest two-level case, each generating ele-
ment is replaced by a Toeplitz block; this structure is also termed BTTB: block Toeplitz with Toeplitz blocks [1]. Levels
higher than two are common, such as in a three-dimensional spatial or four-dimensional spatiotemporal random field.

The special Toeplitz structure enables the design of fast linear solvers that have a cost asymptotically lower than
that of general solver based on triangular factorizations, O(n?), where n is the number of rows (equivalently, columns)
of the matrix. Such methods have been extensively studied; a few representative ones are Levinson-Durbin o3 (2,3,
4], Bareiss O(n?) [5, 6], and “superfast” solvers O(nlog® n) [7, 8, 9, 10]. Compared with the abundance of algorithms
for Toeplitz systems, algorithms for multilevel Toeplitz systems are rare. One of the reasons is that extending the
above algorithms to fully utilize the recursive Toeplitz structure is not straightforward. In this paper, we consider the
approach of using an iterative Krylov method [1].
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Employing a Krylov method offers several advantages, the most important being that the method is independent
of the number of Toeplitz levels. Rather, the multilevel structure is exploited in the matrix-vector multiplication and
preconditioning. The time cost of a Krylov method on a multilevel Toeplitz matrix is O(kn log n) and the storage cost
is O(n), where k is the number of Krylov iterations. A class of preconditioners based on a corresponding (multilevel)
circulant structure has been proposed to ensure that k grows much more slowly than does n [1]. These properties make
it possible to solve systems of a very large scale.

The multilevel Toeplitz structure provides a rich design space and requires additional implementation efforts than
building the generic Krylov iteration framework, the latter having been implemented in many sophisticated numerical
libraries such as PETSc [11] and Trilinos [12]. This paper addresses the Toeplitz-specific issues that are beyond the
implementation of a generic Krylov solver.

1. How can the matrix-vector multiplication be carried out efficiently? In principle, the multiplication with a mul-
tilevel Toeplitz matrix is performed through multidimensional fast Fourier transforms (FFTs). The implemen-
tation is complicated by data partitioning, expansion, and truncation, all of which have significant implications
for data movement.

2. How is the data (matrix and vectors) partitioned?

How is the preconditioner constructed and applied?

4. For multiple right-hand sides, a block Krylov iteration is often a viable choice, because it converges faster than
do single-vector iterations. Block iterations offer flexibility in handling linearly dependent vectors, where usu-
ally a rank-revealing factorization is performed and columns are split in the event of linear dependence. The
factorization is often expensive because of communications. However, unlike its use in long-term Krylov iter-
ations (such as GMRES), here exact orthogonality is not important. Thus, we implement an orthogonalization
procedure that is sufficiently stable for block iterations and also is computationally as efficient as computing
one block inner product.

5. We discuss a mathematically equivalent rearrangement of the inner-product and norm calculations for eliminat-
ing the all-reduce synchronizations. Removing the synchronizations improves concurrency at a large process
count. We demonstrate that the algorithmic rearrangement is numerically stable.

bt

For clarity of presentation, we focus on the real supersymmetric case (meaning that all the Toeplitz levels are symmet-
ric) and the conjugate gradient (CG) algorithm; but the design principles are not restrictive. With slight additional cod-
ing effort, the implementation can be generalized to complex Hermitian matrices and nonsymmetric/non-Hermitian
matrices. Several techniques, such as matrix-vector multiplication and preconditioning, are independent of the specific
choice of the Krylov method and thus are applicable.

An application of the solver is Gaussian process [13, 14, 15, 16] maximum likelihood estimation (MLE), which is
a general framework for parameter selection in statistical data analysis. In a Gaussian process, the covariance matrix
is multilevel Toeplitz if the process is observed on a regular grid and if it is stationary. The MLE is an optimization
procedure for estimating the parameters in the covariance matrix. Following the MLE method studied in [17, 18], we
apply the solver and demonstrate its capability in performing MLE with large-scale data. The example data in this
paper comes from climate science. Based on the model computed from MLE, we are able to perform interpolations
for existing data and forecasting for future time steps. The solver is a major component of the ScalaGAUSS project.!

2. Preliminaries

This section provides background on the mathematics involved in our implementation. Because of the compli-
cation in notation, we will use upper case letters (such as A) to denote a matrix, boldface lower case letters (such
as y) to denote a vector; and sans serif fonts (such as c) to denote a multidimensional data array, which can be one-
dimensional (vector), two-dimensional (matrix), and higher dimensional. The first two notations admit mathematical
meanings whereas the last one is more suitable for presenting algorithms.

"http://press3.mcs.anl.gov/scala-gauss/



2.1. Circulant and Toeplitz Matrices

A circulant matrix C and a Toeplitz matrix T, of order n, are defined in the following forms, respectively:

[ Co Cn-1 Cp—2 e e Cy ) [ tO 1 to e e t_n+1_
C1 c  Cp-1 - : 151 Iy I
c c t t
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We use a subscript n to emphasize the order when necessary. In the real symmetric case, both matrices can be
represented solely by their first column. We use one-dimensional arrays ¢ = [cy, ...,c,—1] and t = [1o, ..., #,-1] as data
representations of C and T, respectively. (At the end of Section 3 we briefly discuss how to incorporate the entries
t_1,...,t_n41 in the unsymmetric case.) A Toeplitz matrix T,, can be embedded into a circulant matrix C», (of twice
the size) in the following form:

@)

All the elements (except for the diagonal ones) in the two subblocks denoted by * are well defined. In the data
representation, we have

t; i=0,....,n-1,
C; = Jarbitrary i =n, 3)
ton—i i=n+1,...,2n-1.

Informally, the embedding means that the first half of ¢ is t, whereas the latter half is a “flipping” of t except for the
first entry. By convention, we set this arbitrary entry to be zero.
The multiplication of C with a vector y utilizes the fact that C can be diagonalized by a discrete Fourier transform
(DFT). Specifically, the diagonalization is
Ucu” = A,

where A = diag(4y, ..., 4,) contains the eigenvalues of C and U is the DFT matrix with entries U j, = exp(i2n jk/n)/ \n.
Multiplying the vector of all ones on both sides of this equation, one sees that the eigenvalues can be obtained all
at once by applying FFT on the first column of C, followed by a scaling +/n. Then, the matrix-vector product
v = Cy = U AUy can be calculated by using the precomputed eigenvalues and applying FFT twice (one forward and
one backward). The detailed steps are shown in Algorithm 1.

Algorithm 1 Circulant matrix times vector v = Cy (data representation Vv, C, Y)

1: Precompute eigenvalues A as the FFT of ¢ multiplied by v/n
2: Compute z as the FFT of y

3: Compute w as the elementwise product of A and z

4: Obtain the result v as the inverse FFT of w

The multiplication of T with a vector y exploits the circulant embedding of 7':

2l el

where the * beneath T,y denotes some unessential subvector. The steps for computing v = Ty are shown in Algo-
rithm 2, utilizing the circulant multiplication in Algorithm 1.

To generalize the definition of circulant and Toeplitz to multilevel cases, we use recursion. With the form (1), if
each ¢; itself is a (d — 1)-level circulant matrix, then C is a d-level circulant matrix. The data representation of C is a
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Algorithm 2 Toeplitz matrix times vector v = T'y (data representation v, t, y)

1: Construct the data representation ¢ as the embedding of t according to (3).

2: Embed y into a length-2n vector y’ (all remaining entries being zero)

3: Multiply the constructed circulant matrix with y’ to obtain the product v’ using Algorithm 1
4: Truncate v’ (keeping the first n entries) to obtain v

d-dimensional array c of size n; X --- X ng. We let n; X --- X ny = n. For example, when d = 2, we have a two-level
circulant matrix C, where each ¢; € R"” is circulant and there are n, such ¢;’s. The data representation ¢ is an ny Xn,
array, where the ith column of ¢ is the first column of ¢;. Similar definitions apply to a d-level Toeplitz matrix 7" with
a data representation t. When the context is clear, we will drop the qualifier “d-level” or “multilevel” since the basis
case “l-level” is simply a special case.

Now the notational benefit of using data representations is clear: the multiplication algorithms need little modi-
fications. Specifically, for multilevel circulant matrices, in Algorithm 1 “FFT” means “multidimensional FFT.” For
multilevel Toeplitz matrices, the embedding and the truncation in Algorithm 2 are performed along each dimension of
the data array. It suffices to show a pictorial example for the two-level case. The vector y is represented as an n; X n
array Y. Then the embedding is )

y = (y) 8} :
which is of size 2n; X 2n,. Similarly, the two-level Toeplitz matrix 7 has a data form t. Then, its circulant embedding
C has a data form

T
e=| 7] @
where the blocks denoted by * contain the “flipping” of t. Formally, fori = 0,...,n; — 1,
tij j=0,...,7’l2—1,
Cij = jarbitrary j = ny,
ti,2n27j j=n2+1,...,2n2—1.
Then, for j =0,...,2n; — 1,
tij i=0,...,n1—1,
Cij = arbitrary i=ny,
t2n1—i,j i=n1+1,...,2n1—1.

2.2. Conjugate Gradient Algorithm and the Block Version

Given a symmetric matrix A € R™" and a vector b € R™!, the standard CG algorithm [19] for solving
Ax =b

is presented on the left panel of Figure 1. It accepts an initial guess x, and refines the approximate solution x j,; until
the residual r;,; falls below a relative tolerance rtol or j exceeds the maximum number of iterations maxit. In the
algorithm, M is the preconditioner, a symmetric positive definite matrix that approximates A.
The algorithm can be generalized to use block iterations for solving a system with s right-hand sides simultane-
ously [20, 21]:
AX = B,

where B € R™*. We call such matrices B, where the number of columns s is far smaller than the number of rows
n, block vectors, and we write b® for the ith column of the block vector. The block iteration, as presented in the
right panel of Figure 1, resembles the single-vector iteration. In particular, the vectors in CG become block vectors
of width s, and the scalar coeflicients (o}, 7;, @, and 5;) become s X s coeflicient matrices. The orthogonalization



1y =1l 1: Y =169 for all i

2. rg=b—Axg 2. Ry = B-AX,

3: po = llroll 3: pg) = ||rg)|| for all i

4: if po/y < rtol then return 4: if p) /y"" < rtol for all i then return

5:20=M'rg 5. Zo = MR

6: 00 =210 6: 09 =Z{ Ry

7: po = 20 7. Py =2y

8: // empty 8: Initialize IDX = {idx} with idx = {1,2,..., s}

9: for j=0,1,..., maxitdo 9: for j=0,1,..., maxitdo

10: // empty 10: Update IDX < ORTHOGONALIZE(P;, IDX)

11: v;=Ap; 11: V;=AP; > for each idx € IDX
122 T, =py; 122 1;=PlV, > for each idx € IDX
13: aj=0j/t; 13: aj=‘1';10'j > for each idx € IDX
14: Xjs1 = Xj+a,p; 14: Xjs1 = Xj+ Pja; > for each idx € IDX
15: Pl =T —ay, 15: Ris1 =R;—Vja; > for each idx € IDX
16: pj1 =rjall 16: PE’L = ”"521” for all i

17: if pj+1/y < rtol then return 7. if pyil /¥® < rtol for all i then return

18 zju = Mrg 18 Zj =M 'Rjy > for each idx € IDX
19: T = ijHer 19: Oyl = ZjTHRjH > for each idx € IDX
20: Bj=0j/o; 20 B = a;la_/+1 > for each idx € IDX
21: Pjt1 = Zj+1 +B;p; 21: Pis1=Zj +PiBj > for each idx € IDX
22: end for 22: end for

Figure 1: CG (left) and block CG (right). To avoid cluttering, the block CG algorithm omits the indicator idx attached to every iterate below
line 10. It should be interpreted as the column indicator of the block vectors (upper case letters) and principal submatrix indicator of the coefficient
matrices (Greek letters). For example, V; = AP; means V;(:,idx) = AP;(:, idx), and 7} = P/T,Vj means 7;(idx, idx) = P;(;, idx)TV/-(:, idx).

step OrRTHOGONALIZE(P ;, IDX) takes a block vector P; and a set of index sets IDX = {idx} as input, performs a rank-
revealing orthogonalization on each P;(:, idx) and splits the indices in idx if linearly dependent columns are found.
The orthogonalization step ensures that each output idx gives a set of columns of P; that are linearly independent.
Then, all the calculations starting from line 10 are in essence performed on the subcolumns of the block vectors and
on the principal submatrices of the s X s coefficient matrices. When s = 1, block CG is equivalent to CG.

In addition to being able to solve a linear system with multiple right-hand sides, an advantage of block iteration is
its fast convergence. Denoting by x\ = A7 the solution, we have for the convergence rate of (block) CG [20]

J
\/l_(“ — 1) DY
Vi + 1

where || - ||4 denotes the A-norm of a vector, x; = 1,(M~'A)/A,(M~'A), A are the eigenvalues of M~'A sorted increas-

ingly, and D) is a constant independent of the iteration j. One sees that as s increases, the solution error x;i) —x
decreases faster because « is smaller.

e =2l < (

2.3. Circulant Preconditioning

For our case, A is a multilevel Toeplitz matrix. When A is one-level, a class of circulant matrices is proposed as
the preconditioner M [1]. The general idea for defining these preconditioners is to impose the circulant structure and
to minimize the difference between M and A in some norm. We refer the reader to [1] for a comprehensive exposition
of the preconditioners. Here, we will use T. Chan’s preconditioner [22], which yields a clustered spectrum of M~'A,
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hence assisting the CG iteration to converge superlinearly. It is straightforward to generalize M to the multilevel
case. Although the superlinear convergence property is lost in this case [23], the corresponding multilevel circulant
preconditioner yields sufficiently good performance in practice [1].

Using the notation in Section 2.1, let the n; X --- X n; data arrays a and m represent the matrices A and M,
respectively. In the one-level case (where n = n;), T. Chan’s preconditioner is defined as

m;=(n-j)a;+ ja,_)/n, j=0,...,n—-1.

Informally, m is a weighted averaging of a and its flipping, and the weights are defined with respect to the locations
of the entries. Then, in the general d-level setting, the averaging is done along each dimension. To avoid notational
tediousness, we show in Algorithm 3 the averaging procedure for the three-level case. Generalization to any d is
straightforward.

Algorithm 3 Constructing preconditioner M (for d = 3)

1: Assignm « a

22 Updatem . . ;< ((ny—jym.. ;j+jm..,_)/nforj=0,...,n -1
3: Updatem;,j,; «— ((nz—j)m;,j,: +jm;,,,2_j,;)/n2 fOI'jZO,...,I’lz—l
4: Updatem ;.. < ((n3—jm;..+jm,_;. )/nyfor j=0,...,n3 -1

3. Data Partitioning

In the general d-level case, since the Toeplitz matrix T, the circulant preconditioner M, and the vectors y are all
represented as n; Xnp X - - - X ng data arrays, a natural approach of parallel processing is to use a logical d’-dimensional
process grid of size p; X py X - -+ X pg to partition these data. Let p; X py X --- X py = p. Without loss of generality,
we require that p; > 1 fori = 1,...,d’, and we let the ordered sequence of integers S = {1,...,d} be divided into
d’ + 1 consecutive subsequences S, ...,Sy+1, where S; # 0 fori = 1,...,d" + 1. Then, the processes along the ith
dimension of the process grid are responsible for partitioning the S; dimensions of the data, fori = 1,...,d’. The
S #+1 dimensions are unpartitioned. For example, when d = 8, we can have d = 3 and S| = {1,2}, S, = {3,4,5},
S3 = {6}, and S4 = {7, 8}. Figure 2 illustrates the data and the process grid with actual sizes.

data size 76 X 32 x 12 x 58 x 10 x 409 x 48 x 17
process grid 12 X 16 x 13  unpartitioned

Figure 2: Example partitioning of an 8-dimensional data using a 3-dimensional process grid.

We note two popular data partitioning methods for multidimensional FFTs, both of which are special cases of our
scheme. The common idea for multidimensional FFTs is to partition some dimensions of the data while leaving the
others unpartitioned, so that in-process FFTs can be performed on the latter dimensions first. (More details about FFT
are covered in the next section.) The method adopted by FFTW [24] uses a one-dimensional process grid, that is,
p = p1, and these processes partition only the first dimension of the data. The other method, adopted by P3DFFT [25]
and others [26, 27], handles particularly three-dimensional data (i.e., d = 3). It uses a two-dimensional process grid
of size p; X p, to partition the first two dimensions of the data separately, leaving the third dimension unpartitioned.
The flexibility of our partitioning scheme lies in not only allowing an arbitrary number of dimensions for the process
grid (as long as d’ < d) but also allowing several dimensions of the data to be collectively partitioned.

One advantage of using a high-dimensional process grid is that it increases the allowable maximum number of
processes for solving a problem with a fixed size. This benefit comes with certain sacrifices, depending on the
specific computations with the data. For multidimensional FFTs, if one fixes the number of processes but varies the
dimensions of the process grid, the higher the dimension, the more overhead that is incurred in performing all-to-all
communications. In general, it is difficult to theoretically analyze the best configuration of the process grid under
various machine settings, especially because of the variance of interconnection network. Hence, performance tuning

6



(runtime parameter optimization) is a better tool for figuring out the best or near-best configuration under the flexible
partitioning scheme we provide.

Note two related issues. The first one is that when performing matrix-vector multiplications with the Toeplitz
matrix 7, the FFTs are not performed on the data t that has a size n; X np X --- X ng but, rather, on the circulant
embedding ¢ whose size doubles along each dimension: (2n;) X (2n3) X - - - X (2ny); see (4). Constructing such a ¢
from t requires data redistribution, where a naive implementation incurs significant data movement among processes.
In the next section, we present an approach that hides the data movement in the FFT calculations, thus eliminating the
communication.

The second issue is how to generalize this partitioning scheme for unsymmetric multilevel Toeplitz matrices and
preconditioners. If T is unsymmetric, it can no longer be represented by using only the first column; the first row
must also appear in the data representation t. Hence, for the one-level case, t = [to, ..., -1, *, t_p+1, ..., 1-1], Where
* is arbitrary. The d-level case is straightforward. Then, one can easily verify, according to (2), that the circulant
embedding C has a data representation ¢ exactly the same as t. In other words, for the nonsymmetric case, the
partitioning of 7 in effect acts on a data of size (2n) X (2ny) X - - - X (2n,4), whereas the partitioning of the preconditioner
and the vectors still acts on data of size n; X np X --- X ny. The partitionings between these two sizes are switched
frequently throughout the CG iterations, using the communication-hiding technique elaborated in the next section.

4. Matrix-Vector Multiplication

The Toeplitz matrix-vector multiplication (A-multiply) is the most computationally intensive component of the CG
solver, which requires data embedding/truncation and circulant matrix-vector multiplications, the latter being done
through multidimensional FFTs. The preconditioniong step (M~'-multiply) is a straightforward extension because M
is circulant, except that the data size is not as large as that in A-multiply.

Both A-multiply and M~'-multiply have a precomputation step where the eigenvalues of the embedding of A, and
the eigenvalues of M are computed. Similar to the matrix-vector multiplications, these eigenvalues are computed by
using FFTs.

Hence, in this section, we focus on the computation of the product v = Ay = T'y, assuming that the eigenvalues of
the embedding of T are known. Recall steps 2—4 in Algorithm 2 for computing T'y. We propose two communication-
hiding techniques to streamline these steps so that the communication overhead is greatly reduced.

4.1. Combining Embedding with FFT

If we naively perform embedding first and then FFT, the embedding incurs communications. The key observation
is that FFT requires data transposes; hence the communications for embedding are redundant in the presence of
transposes. Let a fiber denote a segment of a multidimensional data where some indices are fixed and the remaining
indices take the whole range (thus, we often say a fiber along some dimension(s), meaning that the dimensions are
with respect to the varying indices). For the dimensions along which the fibers are not partitioned, the embeddings
along these dimensions do not require interprocess communications. Then, the embeddings along other dimensions
are performed only when the fiber along the corresponding dimension becomes unpartitioned during the process of
transposes in FFT.

The complete steps are best explained by walking through Figure 3, which uses the example data and process
grid in Figure 2. Here, “data” means the vector y, not t. Initially, the eight-dimensional data (whose size is indicated
by the numbers above the long rectangular frame) is partitioned by a three-dimensional process grid (whose size is
indicated by the numbers inside the frame), wherein the seventh and the eighth dimensions are unpartitioned. The first
embeddings are performed along the unpartitioned dimensions, followed by FFTs, resulting in the doubling of sizes
along these dimensions. Then, a data transpose is performed between the sixth dimension and the seventh and eighth
dimensions, so that now the sixth dimension becomes unpartitioned. An embedding followed by FFT is performed
along this dimension. This procedure continues until the unpartitioned dimensions are iterated to the front. After the
embeddings and FFTs along these dimensions, phase 1 is concluded. Every dimension of the data has doubled the
size, and the full multidimensional FFT is completed on the doubled data.

After phase 1, an elementwise multiplication is performed, which in effect multiplies every eigenvalue of the
embedding of T with every element of the doubled data. Then comes phase 2, a reverse procedure of phase 1, where
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1

76 32 12 58 10 409 48 17
T T T T
| 12 proc | 16 proc | 13 proc embed & FFT
1 1 1
—
)
0
@
<
o

76 32 12 58 10 409 96 34
T T T T
| 12 proc | 16 proc | embed & FFT I 13 proc |
1 1 1 1
76 32 12 58 10 818 96 34
| 12 proc | embed & FFT I 16 proc | 13 proc |
76 32 24 116 20 818 96 34
T T T T
| embed & FFT I 12 proc | 16 proc | 13 proc |
1 1

1

————— e ——— elementwise multiplication - - - - - ————— —

152 64 24 116 20 818 96 34
T T T T
| IFFT & trunc I 12 proc | 16 proc | 13 proc |
1 1 1 1
76 32 24 116 20 818 96 34
N | 12 proc | IFFT & trunc I 16 proc | 13 proc |
% 1 1 1 1
(4]
< 76 i 32 12 i 58 i 10 818 96 i 34
| 12 proc | 16 proc | IFFT & trunc I 13 proc |
1 1 1 1
76 i 32 12 i 58 i 10 409 96 : 34
| 12 proc | 16 proc | 13 proc | IFFT & trunc |
1 1 1 1

Figure 3: Example in Figure 2 continued: Multiplying an 8-level Toeplitz matrix with vector.

the unpartitioned dimensions are iterated from the front to the back, along which inverse FFTs and truncations of the
data are performed. The result is data having the same size as the original before entering phase 1. This data is v, the
product of T'y. One sees that, in the entire procedure, the communications of embedding and truncation never occur.
What are the computation and communication costs of this procedure? Let us break the costs in three categories:
(i) cost for in-process FFTs; (ii) cost for data transpose; and (iii) cost for other linear-time operations, such as embed-
ding and truncation of the data. We reuse the notation §; introduced in Section 3; it denotes a consecutive subsequence
of {1,...,d} that indicates the data-grid dimensions that are not partitioned during the course of transposes. Define

qi:=Z|Sk| for i=1,...,d +1.

k>i

We consider only phase 1 because the cost for phase 2 is the same. In the step where the S; dimensions are unpar-
titioned, the number of fibers is [] s 29 because there are g; dimensions whose sizes have been doubled. The
size of one fiber is []es,(2n;), on which an in-process FFT is carried out. Then, a data transpose occurs among all
p/ pi—1 independent communication subgroups, if i # 1. Each subgroup comprises p;_; processes, each holding a data
volume of 29-'n/p. Only 1/p;_; of the volume stays; the rest is redistributed to the other p;,_; — 1 processes in the
same subgroup. Note that in a multicore environment, the redistributed data is not necessarily transferred through the
communication network. The rest of the operations other than in-process FFTs and communications is linear with the
current data size, which is n - 2%, Table 1 summarizes these costs.

One might be able to carry out a performance modeling based on the numbers listed in Table 1. In this paper,
however, we do not pursue such a modeling because of several reasons. First, the FFT library is typically fine tuned
and cache oblivious, which leads to a performance curve that is not well aligned with the the theoretical complexity.
Second, the communication cost for performing transposes varies significantly with the MPI implementation and the
machine architecture. Third, to the contrary of the intuition that FFTs are costly, we observe in our implementation
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Table 1: Categorical costs of matrix-vector multiplication, phase 1. Assume currently the S; dimensions of the data grid are unpartitioned.

Number of in-process FFTs | [] e, 1, - 2%
Data size of each FFT | []c5,(2n))
Number of communication subgroups | p/pi-i
Data size of transpose for each subgroup | n-2%"1-p;,_;/p

Asymptotic cost for all other operations \ O(n -2%)

that the cost of linear-time operations such as embedding, truncation, and data copying between buffers generally
dominates, despite the fact that several coding efforts have been spent on optimizing these operations. Fourth, the
pipelining effort proposed in the following subsection increases the difficulty of performance modeling.

4.2. Pipelining FFT with Transpose

Figure 4(a) shows another view of the flow of Figure 3. In phase 1, embedding/FFT (denoted as “F”) and transpose
(denoted as “T”) are performed in an alternating fashion. The data dependency requires that a second “F” step cannot
be started before the previous “T” step is completed. After phase 1 is the elementwise multiplication (“M” step),
followed by phase 2. Phase 2 contains similar alternating steps: inverse FFT/truncation (denoted as “I”’) and transpose.

phase 2
| —

phase 1
—F—+ T >—F —

—F —+ M — 1 —

(a) Another view of Figure 3. “F” means embedding and FFT, “T” means transpose, “M” means elementwise
multiplication, “I” means inverse FFT and truncation.
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(b) Pipeline one “F” step and one “T” step in (a). Both “F” and “T” are broken into

r substeps.
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(c) Data transpose in substeps. Gray data reside in one process, and white data reside in
the other.

Figure 4: Pipelining the FFTs.

In each “T” step, a large portion of the data is moved between processes. The communication is of all-to-all type,
one of the most demanding communications in MPI. The costly demand is caused by the latency for synchronization
and the sheer volume of the data needed to be transferred.

One idea of saving the communications is to streamline one “F” step and one “T” step through overlapping [28].
Whereas the overlapping in [28] is performed on the FFTs of different data, we use overlapping on the FFTs of
different pieces of one data. Figures 4(b) illustrates our idea. We break an “F” step into substeps and similarly for a
“T” step, obeying data dependency. Once the first “F” substep is finished, the procedure forks the first “T” substep,
which is performed concurrently with the second “F” substep. The concurrent execution requires a nonblocking all-
to-all implementation (see MPI-3 standard, MPI_Talltoall, [29]), which is provided by LibNBC (NBC_Ialltoall;



see [30]) or MVAPICH2.2 A synchronization (essentially a wait opertion) is needed before the third “F” substep to
ensure that the first nonblocking all-to-all finishes. Then, the third “F” substep and the second “T” substep execute
concurrently, and similarly for later substeps.

As an example, let us consider a two-dimensional data with two processes; see Figure 4(c). The data is initially
partitioned along the column dimension; one process holds the gray data and the other the white data. A normal “F”
step followed by a “T” step would mean jumping from the first box directly to the last one. On the other hand, if
we do pipelining, we subdivide the column dimension into three slices for each process. In the first substep, FFT is
done on the first slice, followed by a transpose. This results in the second box. Then, in the second substep, FFT and
transpose are done on the second slice, resulting in the third box. One more similar substep leads to the last box.

In general, each dimension i of the process grid is associated with a slicing number m;. In phase 1, when the
Si+1 dimensions are unpartitioned, the “F” step that performs FFTs along the the S, dimensions is pipelined with
the following “T” step that transposes data between the §; dimensions and the S,.; dimensions. Because the §;
dimensions are subdivided into m; slices, each “F” substep and “T” substep work on one of the slices; see Algorithm 4.
The pipelining for phase 2 is similar.

Algorithm 4 Pipelining one “F” and one “T” step

// Assume that the S;;; dimensions are unpartitioned
1: Embed and FFT on slice 1 of data
2: Start nonblocking all-to-all on slice 1 of data
3: for j =2 tom; do
4 Embed and FFT on slice j of data
5: Start nonblocking all-to-all on slice j of data
6 Wait until all-to-all on slice j — 1 of data finishes
7: end for
8: Wait until all-to-all on slice m; of data finishes

5. Orthogonalization

The purpose of orthogonalization (see line 10 of the right panel of Figure 1) is to detect linearly dependent columns
of P(:, idx) for each idx € IDX and split them out from idx. To simplify notation, we temporarily omit the indicator
idx and write P € R™! where s is the cardinality of idx. A common approach of detecting linear dependence of
the columns of P is to compute a rank-revealing factorization

PII = OR, Q e R™ IR € R 51 < n, (5)

where the columns of Q are orthonormal and IT is a permutation matrix. The term rank-revealing refers to the
permutation such that if P has a rank r < sy, the first » columns of Q form a basis of the range of P. One simple
example of such a factorization is the (thin) QR factorization with pivoting, where R is upper triangular.

We now put back the indicator idx. In a computer implementation, we let IDX be an ordered list, with a front
pointer pointing to its first element and a rear pointer pointing to the last element. Each element idx has a next
pointer that points to the next element in the list. Initially, IDX has only one element, idx = {1,2,...,s}. An
abstraction of the orthogonalization is the following

1: Let idx « IDX.front

2: while idx # IDX.rear.next do

3: Find a maximal subset idx1 C idx such that columns of P(:, idx1) are linearly independent.
4: Let idx2 = idx\idx1.

5 If idx2 # 0, replace idx by idx1 and add idx2 to the end of IDX. Update IDX.rear.

6 Update idx « idx.next.

2http://mvapich.cse.ohio-state.edu/overview/mvapicl’12/

10



7: end while

After several block-CG iterations, IDX will have some element idx containing only one index; afterward, the linear
system with respect to this index has converged. Then, idx is removed from IDX. When IDX becomes empty, all
systems are solved.

Hence, the key question is how to find the maximal subset idx1? Two numerically stable methods are House-
holder (HOS) and modified Gram—Schmidt (MGS) [31]. These methods are not suitable for parallel implementations,
however, because of the high cost in frequent all-reduce synchronizations. The classical Gram—Schmidt (CGS) re-
quires fewer synchronizations, but it causes a severe loss of orthogonality. Furthermore, the number of required
synchronizations is still more than one. The TSQR method [32, 33] computes local QR factorizations through HOS
and iteratively combines local R factors and updates the local Q factors until Q is globally orthogonal. The total
communications in all these combinations and updates are equivalent to one all-reduce operation. The breaking of
one all-reduce into substeps of TSQR makes the synchronization more subtle. Effectively, the amount of transmitted
data in TSQR is equal to all the initial triangular R factors. TSQR is as stable as HOS.

In our solver, we implement a slightly simpler method, SVQB [34], that requires only one straightforward all-
reduce, wherein the amount of transmitted data is approximately the same as that of TSQR. The numerical stability
of SVQB is close to that of MGS, sufficient for our use. Different from SVQB, however, in our implementation the
matrix factors are not computed.

For notational consistency, let the matrices W, W, D, U, A in what follows all have size s x s. First, a block inner
product is computed:

W(idx, idx) = P(:, idx) P(:, idx) for all idx € IDX. (6)

This is where the only communication of the whole orthogonalization procedure appears; the block inner product can
be computed with one all-reduce. Next, iterate through the list IDX, which might be dynamically adjusting. For each
element idx, a diagonal normalization is performed:

W(idx, idx) = D(idx, idx)""/?W(idx, idx)D(idx, idx)"'/?, (7)

where D is the diagonal part of W. This results in a W whose diagonal is a constant 1. We want to find a maximal
subset idx1 C idx such that W(idx1, idx1) is numerically full rank. This calculation can be done by using a pivoted
Cholesky factorization [35]. A more straightforward approach that directly uses LAPACK [36] routines is to perform
a spectral decomposition:

W(idx, idx)U(idx, idx) = U(idx, idx)A(idx, idx),

where U contains the eigenvectors and A contains the eigenvalues. We then find a maximal subset of eigenvalues that
are numerically nonzero. That is, using a threshold eps, let

idx3 = {k € idx | |A(k, k)| > eps - Amax), Where Apax = ]Enadx{IA(k, k)l}.
€1dx

In a usual numerical-rank computational procedure eps is chosen to be the machine precision 2.2204e-16; we found
through extensive validations, however, that setting eps to be 2.2204e-14 is a safer choice in the presence of diagonal
normalization (7). A too-small eps cannot distinguish duplicate columns in an adversarial situation. Then, idx1 is
extracted through a pivoted-QR factorization of U(idx, idx3), where U(idx1, idx3) is square and has full rank.

Note that contrary to what the name of the procedure suggests, orthogonality is not essential. In fact, we never
explicitly compute the orthogonalization (5). More important is to ensure that each resulting idx € IDX contains
linearly independent columns, so that in line 13 of Figure 1 the submatrix 7;(idx, idx) to be inverted is nonsingular.
We further safeguard the iterations by replacing inverse with pseudoinverse in lines 13 and 20. The appeal of this
orthogonalization method is that the only communication used is for computing the block inner product (6). This type
of communication facilitates the algorithmic rearrangement of CG, as discussed in the following section.

6. Eliminating All-Reduce

All-reduce is required for computing norms and inner products. The all-reduce synchronization causes processes
first entering the synchronization point to wait for the later ones, hence wasting CPU cycles. A nonblocking version
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of all-reduce is not helpful, because the all-reduce result is immediately used in the following calculations, meaning
that the availability of the result acts as a virtual synchronization point.

Let us examine closely why processes might enter the all-reduce synchronization point in succession rather than
simultaneously. We focus on the matrix-vector multiplication of CG (line 11, left panel of Figure 1) as an example,
because immediately following it is the inner product calculation. Recall the flowchart, Figure 4(a), of the matrix-
vector multiplication. Before the final “I” step, an “I”” step and a “T”” step are pipelined by using the method illustrated
in (b). Then, processes in the same communication subgroup enter the final “I”” step concurrently, but processes in
different subgroups are not synchronized. Thus, a time lag may exist between processes in different subgroups starting
the final “I” step, and hence, finishing the step.

To improve concurrency, we may eliminate the synchronization point required by all-reduce. The approach we
propose here rearranges the inner-product calculation. We still use line 11 and the line that follows as an example.
Procedurally, these two consecutive steps are

vij=Tp;, — szpjrvj. ®)

Let the embeddings of v;, T, and p; be denoted by v}, C, and p}, respectively, and let the multilevel circulant C admit
a diagonalization UCU H — A. Then, we have

v.=Cp) = UHAUp; and T1;= p;-Tv; = (Up;-)H(Uv;-).

The first relation is nothing but the method to compute Toeplitz matrix-vector multiplication through embedding and
truncation. The second relation holds because U, the DFT matrix, is unitary. Therefore, the procedural steps (8) can
be modified to

p// _ Up/ N p/// _ Ap// N V} = UHP;// (9)
J J J J 7= (pl]/)H(p/],,) .
phase 1 “M” step
phase 2

One sees that 7; is computed concurrently with phase 2 of the matrix-vector multiplication. The way to calculate this
inner product is not to directly call all-reduce but, rather, to use the all-to-all communications in phase 2 to accumulate
the local sums.

This idea is used in several places of CG and block CG, eliminating all the all-reduce synchronizations. The
essence is to rewrite the inner products by using the DFT matrix and to utilize the inverse FFT communications
to accumulate the rewritten, local sums. For norms, they even need not be rewritten, and the local sums can be
accumulated through either the inverse FFT communications in phase 2 or the FFT communications in phase 1. In the
following we list the places (following Figure 1) where this idea applies, and we summarize their implementations.

1. CG, lines 3 to 6. The preconditioning follows the same procedure: phase 1 — “M” step — phase 2. Hence,
the norm p( is computed in phase 1; the inner product o is computed in phase 2. The convergence test is
inserted between phase 1 and the “M” step. If all the systems have converged, the solver returns immediately,
abandoning “M” step and phase 2.

CG, lines 11 to 12. Already explained.

CG, lines 16 to 19. Similar to item 1.

Block CG, lines 3 to 6. Similar to item 1.

Block CG, lines 10 to 12. Recall that the communication in the orthogonalization procedure occurs in com-
puting a block inner product (see Section 5, in particular, (6)). Hence, this block inner product is computed in
phase 1. Then, IDX is updated between phase 1 and the “M” step. The block inner product 7; is computed in
phase 2. Note that 7; must be computed after IDX has been updated.

6. Block CG, lines 16 to 19. Similar to item 1.

AN

Note that the rearrangement affects the inner products and norms but not the matrix-vector products. Since the
rearrangement applies unitary transformations, it is numerically stable. Hence, the numerical properties of CG and
block CG are not changed.
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7. Experiments

In this section we show experiments to demonstrate the correctness of the solver and the effectiveness of the
techniques proposed in the preceding sections. The experiments were conducted on a cluster of 310 compute nodes,
each of which has 16 cores (Intel Sandy Bridge) and 64 GB of memory. The machine uses QLogic QDR InfiniBand
for interconnect, and thus we used the library LibNBC on InfiniBand [37] for performing all-to-all communications.
The multilevel Toeplitz matrix was generated from the Matérn kernel [14, 13, 15] on a regular grid. It is positive
definite for any number of dimensions. All the experiments reported in this section are based on a three-dimensional
data grid and a two-dimensional process grid; the results for other grid configurations are omitted to avoid repetition.

Figure 5(a) shows the residual histories for solving the linear system with s right-hand sides, where s = 1, 5,
10, and 20, respectively. The right-hand sides are filled with independent and random values taking +1 with equal
probability. One clearly sees that the more right-hand sides, the faster the residuals decrease. For the same s, different
residual curves are lumped together; thus we show only the history for the first system. All the systems were converged
almost simultaneously, and there was no splitting of columns in orthogonalization. In plot (b), we fix s = 10 and show
the residual histories for two types of right-hand sides. One type is the random +1’s, whereas the other type generates
the ith entry in the jth vector by following the rule sin((i+ j—2)r/50). For the latter type, one can show that every three
consecutive vectors are linearly dependent. Thus, column splitting must happen in the orthogonalization procedure
when we use zero as the initial guess. In fact, we examine the log and find that in the first iteration the ten right-
hand sides are split in five groups of two. Because the number of right-hand sides becomes smaller in the group, the
decrease in residuals is slower than the +1 case. We conclude that the behaviors shown in both plots well agree with
theory.

Residual of the first system
Residual of the first system

—1RHS
-15 —5RHS
10 71— 10 RHS
—20 RHS
0 50 100 150 200 0 50 100 150 200
Iteration Iteration
(a) Different numbers of right-hand sides. (b) Different types of right-hand sides.

Figure 5: Residual history.

Next, we investigate the effectiveness of pipelining the local FFT calculations with data transposes. We perform
two sets of tests, one varying the data grid and fixing the process grid, whereas the other is the opposite. In both tests
we vary the number m; of slices and show in Table 2 the average times of 30 repeating runs, each of which includes 30
CQG iterations. The numbers in parentheses are standard deviations. In the table we highlight with boldface numbers
the confidence intervals in which the shortest average run time lies. One sees that in most of the cases performing
pipelining improves the running time. Particularly in the last column of the top part of the table and in the first column
of the bottom part, the improvement is substantial. Clearly, the optimal running times are achieved at different m;’s
for different data and process grids. A pattern of these optimal and near-optimal cases is that n;/(p1m1), ny/(p2my),
n3/(pams) are mostly 8 or 16. This implies that possibly the number of fibers in each pipelining substep should be
fixed in order to achieve best performance.

We also evaluate the usefulness of eliminating all-reduce sychronizations in inner product calculations. First, we
have verified the residual history of the modified algorithm that eliminates all-reduce against that of the standard
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Table 2: Running times (in seconds) of the solver when the m;’s change.

Fixed process grid 8 x 8

Data grid— 128 X 128 x 128 256 x 256 x 128 512 x 256 X256 512x512x512
m; : 1,1,1 2.69(+0.11) 10.78(+0.45) 46.78(+1.07) 208.88(+3.14)
m;:2,2,2 2.67(+0.08) 9.88(+0.27) 41.15(+1.59) 178.43(+£3.79)
m; : 4,44 3.12(+0.15) 10.15(+0.23) 41.22(+1.60) 170.22(+2.89)
m; : 8,8,8 5.18(+0.20) 12.11(£0.31) 41.21(+1.10) 169.62(+4.66)

m; : 16,16,16 11.15(£0.72) 19.32(£1.07) 49.12(£1.63) 168.87(+2.93)

Fixed data grid 256 x 256 % 256

Process grid— 4x4 8x8 16 X 16 32 %32
m; : 1,1,1 86.99(+6.10) 22.11(+0.63) 5.82(+0.18) 2.22(+0.19)
m;:2,2,2 79.42(£5.45) 19.99(+0.61) 5.88(+0.15) 3.10(+0.20)
m; : 4,44 75.14(+£4.45) 20.15(+0.67) 7.07(x0.21) 5.03(x0.09)
m; : 8,8,8 73.22(+3.00) 21.98(+0.82) 11.69(+0.36) 11.14(+0.20)

algorithm shown in Figure 1. The histories are almost the same, indicating that the modified algorithm is numerically
stable. In Table 3 we list the time ratios between the modified algorithm and the standard algorithm by varying the
data grid and the process grid. For simplicity we fix the slicing numbers m; to be 2 for all i. One sees that all the ratios
in the table are approximately 80%. Thus, eliminating all-reduce is useful in improving concurrency and shortening
the overall running time.

Table 3: Time ratio between not using all-reduce and using all-reduce for inner product calculations.

Data grid— 256 X 256 X 256 256 x 256 x 512 256 x 512x 512 512x512x512 512x512x 1024

pi 4x4 80.98% 80.34% 80.00% 78.66% 78.99%
pi:4x8 82.30% 81.08% 81.95% 80.74% 80.87%
pi:8X%8 82.51% 81.02% 81.14% 80.88% 81.81%
pi 8% 16 82.82% 81.40% 80.85% 79.48% 80.31%
pi: 16 x16 83.65% 82.49% 80.81% 79.46% 79.37%

The last set of tests demonstrates the scaling of the solver. Because pipelining has been shown to significantly
improve the running time, when performing the scaling tests we must use reasonable slicing numbers. According to
the previous analysis of the experiment results, it is fair to set n;/(p1mi) = no/(p2my) = n3/(pam3) = 8. Then, in
Figure 6 we plot the running times of the solver for data sizes varying from 64 million to 1 billion and for process
counts varying from 16 to 1024. The times are measured as an average of 30 repeating runs, each of which contains
30 CG iterations. The solid curves indicate strong scaling, and the dashed ones indicate weak scaling. The percentage
numbers are parallel efficiency for strong scaling by using the time at the smallest process count as the reference.
Clearly, strong scaling is close to perfect, and weak scaling has a slight increasing trend when the number of processes
increases. These appealing scalings confirm the success of the solver in large-scale calculations.

8. Application

We demonstrate an application of the linear solver in analyzing large-scale climate data based on Gaussian process
modeling. Gaussian processes are a popular statistical model for characterizing data of a stochastic nature. Many
components of climate data exhibit a Gaussian behavior. Here, we consider the downwelling solar flux at the Earth’s
surface and describe it by using a Gaussian process with a covariance kernel of certain smoothness. The modeling
encloses the computational problem of parameter fitting and the applications of interpolation and forecasting. Our
focus is the computational capability of Gaussian processes supported by the linear solver implemented in this paper.
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Figure 6: Strong scaling (solid) and weak scaling (dashed). Percentages are parallel efficiency. Numbers after each solid curve indicate data size.

The climate data’ is a numerical simulation of the Community Atmosphere Model* that includes a system of
partial differential equations whose initial conditions are given by physical measurements and that is solved by using
spectral element methods. The simulation provides a much higher resolution output than that obtained through ob-
servations as the initial input. The output contains monthly average data (of 63 months) with a spatial resolution of 1
degree in both latitudes and longitudes. Thus, the total number of data points is over 4 million. Figure 7 shows two
snapshots of the global distribution of the solar flux, one in November (top of (a)) and one in May (top of (b)). After
removing the seasonal effects by subtracting the mean of the data in every 12 months, the resulting data as shown in
the bottom row of Figure 7 is Gaussian-like, with low smoothness in correlation.

Denote by ¢(x,y) the covariance between two spatiotemporal locations x,y € R?, and let ® be the covariance
matrix with ®;; = ¢(x;,x), i, j = 1,...,n. The problem of model fitting is to parameterize the covariance kernel ¢
and to obtain the parameters that best explain the data. Denote by z the demeaned data as shown in Figure 7, and let
the set of parameters be 6. For Gaussians, the maximum likelihood fitting amounts to maximizing the log-likelihood

1 1
L) = —EZTCD_IZ ) logdet ® — glogzm

or equivalently, solving the first order optimality condition (as known as score equations)

1 oD 1 oD
70— 'z - —tr(qr‘—)

> a6, > a6, =0, Vi. (10)

To overcome the difficulty in evaluating the log-det term in the log-likelihood function and the trace term in the score
equations when @ is large, Anitescu et al. [17] proposed to use the approximate (but unbiased) score equations

1 dD 1 < dD

70— lz- — > W' —u;=0 11

27 6g ° 2NJZ;’ a6, (b
for estimating the parameters, where, in the simplest form, the u;’s are i.i.d. symmetric Bernoulli vectors and there
are N of them. Stein et al. [18] showed that the ratio between the variance of the estimates by solving (11) and that of

3http://trac.mcs.anl.gov/projects/parvis
“http://www.cesm.ucar.edu/models/cesmi.2/cam/
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Figure 7: Top: Solar flux on the earth surface. Middle: Periodic mean of the data. Bottom: Demeaned data (random field).

the estimates by solving (10) is bounded and is independent of #» when the condition number of ® is bounded. Stein
et al. [18] further showed several numerical examples where the ratio of variances grows slowly with n even when the
condition number is unbounded. A computational advantage of this approach is that the evaluation of the approximate
equations requires only matrix-vector multiplications and matrix-solves but not trace or determinant calculations.
Here, since the data is observed on a regular grid, @ is three-level Toeplitz. Then, the matrix-vector multiplications
and the matrix-solves can be carried out efficiently by using the algorithms presented in this paper.

We hypothesized a Matérn covariance structure

(V2vr)’K,(V2vr)

¢(x’y) = 00 2V_1r(y)

12)

[l

where 6y, 81, 6, 65 are scale parameters to be fitted (K, is the modified Bessel function of the second kind of order
v). Because of the roughness exhibited in the data, we set v = 0.5. To impose physical meanings, we assumed that
the data grid was in a cubic region of 180 degrees in latitude X 360 degrees in longitude X 63 months. The unit of the
solar flux was W/m?. A trust-region Newton method in the PETSc package [11] was used to solve (11). We started
from an initial guess 6y = 50 W/m?, 6, = 1.8 degrees in latitude, 6; = 3.6 degrees in longitude, and 63 = 0.63 months
and reached a solution fy = 345.0(x£30.0) W/m?, §; = 20.57(1.80) degrees in latitude, §; = 35.57(3.10) degrees in
longitude, and 63 = 1.724(+0.154) months. The numbers in parentheses are two times the standard deviation (95%
confidence interval). The solution was obtained with several trial-and-error adjustments in the numerical calculations.
At this solution, the rtol for CG is 1e-8, block size s = 9, and the number of random vectors N = 8. Note that a small
N already yields sufficiently accurate estimates; the standard deviations of the results of (11) are only approximately
1.3 times those of (10). Because the calculation process was adjusted several times, the number of accumulated
Newton iterations was postestimated to be several dozen. The number of block CG iterations for each Newton step
ranged from several hundreds to one thousand.
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Using the fitted model (12), we performed kriging, a synonym of interpolation for existing data and of forecasting
for the future. Figure 8 shows two kriging results. Plot (a) is a time series at the location 41.4385N,87.5W (the grid
point closest to Chicago, USA), where the solid dots are the data; the curve interpolating them is the computational
result; and the envelopes indicate a 95% confidence interval. The range of the vertical axis was set to be the same
as that of the whole data so that the width of the envelopes is interpretable. The computational results at the grid
locations must coincide with the known data, with a zero standard deviation. The curve after the last solid dot serves
as a forecasting of the near future. It is not surprising that the confidence deteriorates quickly after the last known data
point, indicating that forecasting cannot be reliable for a distant future.

Plot (b) shows another time series at the location 41.8384N,87.7W (somewhere in the Chicago metropolitan area).
This location is not on the data grid. One sees that the kriging results are similar to those shown in plot (a). Note that
the confidence interval is narrow for locations close to the grid.

#(t 1 #(C :
( I ]
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(a) Location 41.4385N,87.5W (on grid). (b) Location 41.8384N,87.7W (not on grid).

Figure 8: Kriged time series.

9. Conclusions

We have presented an implementation of the CG solver for solving multilevel Toeplitz linear systems that arise
in various scientific and engineering applications, an example being statistical analysis of large-scale climate data as
shown in the preceding section. The implementation uses a series of parallelization techniques in order to achieve a
favorable scaling in a distributive computing environment using MPI. The largest experiment reported in this paper
was carried out with a matrix size of more than one billion and a process count of more than one thousand.

Different from the implementation of iterative linear solvers for sparse matrices, as in popular software packages
including PETSc and Trilinos, the techniques proposed in this paper exploit the multilevel Toeplitz structure and
also reformulate the mathematical algorithm. The implementation treats single and multiple right-hand sides in a
unified manner so that the interface can be simplified. The data-partitioning scheme and the pipelining idea ensure a
communication-efficient program.

An avenue of future work is to better understand the contribution of different program parameters in terms of
performance. This requires performance modeling and performance tuning. One of the important parameters is the
number m; of slices in pipelining. In the experiments we have derived a simple “rule of thumb” to determine a good m;
but this rule is hardly the final conclusion. Another performance factor is the configuration of the process grid given
the data grid. When the data grid is in high dimension, the choice of the process grid is too flexible. This flexibility
would turn to a burden for end users if no general guideline is provided.
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